Mechanism of Cobalt-Catalyzed CO Hydrogenation: 1. Methanation
نویسندگان
چکیده
The mechanism of CO hydrogenation to CH4 at 260 °C on a cobalt catalyst is investigated using steady-state isotopic transient kinetic analysis (SSITKA) and backward and forward chemical transient kinetic analysis (CTKA). The dependence of CH x residence time is determined by 12CO/H2 → 13CO/H2 SSITKA as a function of the CO and H2 partial pressure and shows that the CH4 formation rate is mainly controlled by CH x hydrogenation rather than CO dissociation. Backward CO/H2 → H2 CTKA emphasizes the importance of H coverage on the slow CH x hydrogenation step. The H coverage strongly depends on the CO coverage, which is directly related to CO partial pressure. Combining SSITKA and backward CTKA allows determining that the amount of additional CH4 obtained during CTKA is nearly equal to the amount of CO adsorbed to the cobalt surface. Thus, under the given conditions overall barrier for CO hydrogenation to CH4 under methanation condition is lower than the CO adsorption energy. Forward CTKA measurements reveal that O hydrogenation to H2O is also a relatively slow step compared to CO dissociation. The combined transient kinetic data are used to fit an explicit microkinetic model for the methanation reaction. The mechanism involving direct CO dissociation represents the data better than a mechanism in which H-assisted CO dissociation is assumed. Microkinetics simulations based on the fitted parameters confirms that under methanation conditions the overall CO consumption rate is mainly controlled by C hydrogenation and to a smaller degree by O hydrogenation and CO dissociation. These simulations are also used to explore the influence of CO and H2 partial pressure on possible rate-controlling steps.
منابع مشابه
CO Hydrogenation over Alumina-Supported Sulfide Cluster Catalysts
Bimetallic Mo-Fe and Mo-Co sulfide clusters were anchored on AI,O, and used for CO hydrogenation. In addition to methane, significant amounts of dimethyl ether were produced. The reaction orders obtained from power rate laws for methanation indicated that the surfaces of the catalytic ensembles were not completely saturated by CO, in contrast to the observations for most conventional CO hydroge...
متن کاملInfluence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy.
The influence of particle size in the carbon monoxide hydrogenation reaction has been studied using cobalt nanoparticles (NPs) with narrow size distribution prepared from colloidal chemistry. The surfactant covering the NPs after synthesis could be removed by heating to 200-270 degrees C in H(2). Soft X-ray absorption spectroscopy was performed using a gas flow cell under reaction conditions of...
متن کاملCobalt-catalyzed ammonia borane dehydrocoupling and transfer hydrogenation under aerobic conditions.
Two cobalt compounds, Cp*Co(CO)I2 (1) and CpCo(CO)I2 (2) (Cp* = η(5)-C5Me5, Cp = η(5)-C5H5), catalyze the dehydrogenation of ammonia borane under either anaerobic or aerobic conditions and are also effective hydrogenation catalysts for alkenes and alkynes using ammonia borane as a hydrogen source, also in the presence of air.
متن کاملA nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles.
Hydrogen spillover is of great importance to understanding many phenomena in heterogeneous catalysis and has long been controversial. Here we exploit well-defined nanoparticles to demonstrate its occurrence through evaluation of CO2 methanation kinetics. Combining platinum and cobalt nanoparticles causes a substantial increase in reaction rate, but increasing the spatial separation between disc...
متن کاملCobalt-catalyzed transfer hydrogenation of C=O and C=N bonds.
An earth-abundant metal cobalt catalyst has been developed for the transfer hydrogenation of ketones, aldehydes, and imines under mild conditions. Experiments are described which provide insights into the mechanism of the transfer hydrogenation reaction.
متن کامل